Send to

Choose Destination
See comment in PubMed Commons below
Eur J Biochem. 1995 Jan 15;227(1-2):296-302.

Kinetic properties and ligand binding of the eleven-subunit cytochrome-c oxidase from Saccharomyces cerevisiae isolated with a novel large-scale purification method.

Author information

  • 1Universitätsklinikum Frankfurt, Zentrum der Biologischen Chemie, Germany.


A novel, large-scale method for the purification of cytochrome-c oxidase from the yeast Saccharomyces cerevisiae is described. The isolation procedure gave highly pure and active enzyme at high yields. The purified enzyme exhibited a heme a/protein ratio of 9.1 mmol/mg and revealed twelve protein bands after Tricine/SDS/PAGE. N-terminal sequencing showed that eleven of the corresponding proteins were identical to those recently described by Taanman and Capaldi [Taanman, J.-W. & Capaldi, R.A. (1992) J. Biol. Chem. 267, 22,481-22,485]. 15 of the N-terminal residues of the 12th band were identical to subunit VIII indicating that this band represents a dimer of subunit VIII (M(r) 5364). We conclude that subunit XII postulated by Taanman and Capaldi is the subunit VIII dimer and that cytochrome-c oxidase contains eleven rather than twelve subunits. We obtained the complete sequence of subunit VIa by Edman degradation. The protein contains more than 25% of charged amino acids and hydropathy analysis predicts one membrane-spanning helix. The purified enzyme had a turnover number of 1500 s-1 and the ionic-strength dependence of the Km value for cytochrome-c was similar to that described for other preparations of cytochrome-c oxidase. This was also true for the cyanide-binding characteristics of the preparation. When the enzyme was isolated in the presence of chloride, more than 90% of the preparation showed fast cyanide-binding kinetics and was resistant to formate incubation, indicating that chloride was bound to the binuclear center. When the enzyme was isolated in the absence of chloride, approximately 70% of the preparation was in the fast form. This high content of fast enzyme was also reflected in the characteristics of optical and EPR spectra for cytochrome-c oxidase purified with our method.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk