Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Protein Sci. 1994 Oct;3(10):1883-8.

Malate dehydrogenase: a model for structure, evolution, and catalysis.

Author information

  • 1Centre for Applied Microbiology and Research, Salisbury, United Kingdom.

Abstract

Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid sequence identity. The coenzyme specificity of malate dehydrogenase may be modulated by substitution of a single residue, as can the substrate specificity. The mechanism of catalysis of malate dehydrogenase is similar to that of lactate dehydrogenase, an enzyme with which it shares a similar 3-dimensional structure. Substitution of a single amino acid residue of a lactate dehydrogenase changes the enzyme specificity to that of a malate dehydrogenase, but a similar substitution in a malate dehydrogenase resulted in relaxation of the high degree of specificity for oxaloacetate. Knowledge of the 3-dimensional structures of malate and lactate dehydrogenases allows the redesign of enzymes by rational rather than random mutation and may have important commercial implications.

PMID:
7849603
[PubMed - indexed for MEDLINE]
PMCID:
PMC2142602
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk