Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 1995 Jan 15;305 ( Pt 2):577-81.

Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening.

Author information

  • 1University Department of Anaesthesia, Leicester Royal Infirmary, U.K.

Erratum in

  • Biochem J 1995 May 1;307(Pt 3):879.


We have recently reported that, in SH-SY5Y cells, mu-opioid receptor occupancy activates phospholipase C via a pertussis toxin-sensitive G-protein. In the present study we have further characterized the mechanisms involved in this process. Fentanyl (0.1 microM) caused a monophasic increase in inositol 1,4,5-trisphosphate mass formation, with a peak (20.5 +/- 3.6 pmol/mg of protein) at 15 s. Incubation in Ca(2+)-free buffer abolished this response, while Ca2+ replacement 1 min later restored the stimulation of inositol 1,4,5-trisphosphate formation (20.1 +/- 0.6 pmol/mg of protein). In addition, nifedipine (1 nM-0.1 mM), an L-type Ca(2+)-channel antagonist, caused a dose-dependent inhibition of inositol 1,4,5-trisphosphate formation, with an IC50 of 60.3 +/- 1.1 nM. Elevation of endogenous beta/gamma subunits by selective activation of delta-opioid and alpha 2 adrenoceptors failed to stimulate phospholipase C. Fentanyl also caused a dose-dependent (EC50 of 16.2 +/- 1.0 nM), additive enhancement of carbachol-induced inositol 1,4,5-trisphosphate formation. In summary, we have demonstrated that in SH-SY5Y cells activation of the mu-opioid receptor allows Ca2+ influx to activate phospholipase C. However, the possible role of this mechanism in the process of analgesia remains to be elucidated.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk