A statistically based method to generate response maps objectively

J Neurosci Methods. 1995 Mar;57(1):107-18. doi: 10.1016/0165-0270(94)00146-8.

Abstract

One scheme to classify the physiological response properties of single units in the cochlear nucleus is based on the average discharge rate of the unit and is reflected in the distribution of excitatory and inhibitory regions in a frequency-level map (response map) that spans the unit's receptive area (e.g., Evans and Nelson, 1973; Young and Brownell, 1976; Young and Voigt, 1982; Shofner and Young, 1985, Spirou and Young, 1991). Typically, discharge rate versus level curves are acquired at many frequencies and the investigator determines that a unit is excited or inhibited at a given level if the driven rate is above or below a spontaneous rate estimate by a specified criterion (for example, 20%). The investigator then encloses regions of excitation and inhibition where responses over adjacent frequencies and levels are consistent. In the present report, we describe an objective 3-step computer-based method to generate response maps: raw driven and spontaneous rate estimates are smoothed with a low-pass spatial filter; a unit is said to be excited or inhibited at a given level if the filtered driven rate is above or below the mean filtered spontaneous rate for that frequency by a specified criterion (percentage or statistical); and resultant response maps are median spatial filtered to eliminate spurious regions. The results shown here demonstrate that use of a statistical criterion provides a more reliable detection of excitation and inhibition than a 20% criterion, particularly when the variance of the rate estimates is high. Further, the statistically based method permits unit classification based on response map data that are more rapidly acquired with shorter duration stimuli (32 vs. 200 ms). Although this method is applied to units recorded in the dorsal cochlear nucleus, the technique may be applicable to studies of receptive fields and their plasticity in other systems.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Brain Mapping / methods*
  • Cochlea / cytology
  • Cochlea / physiology*
  • Cochlear Microphonic Potentials / physiology
  • Female
  • Gerbillinae
  • Models, Statistical
  • Neurons / physiology*
  • Software