Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Genetics. 1995 Apr;139(4):1521-32.

Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae.

Author information

  • 1Department of Biology, Faculty of Science, Osaka University, Japan.

Abstract

A temperature-sensitive mre11-1 mutation of Saccharomyces cerevisiae causes defects in meiotic recombination and DNA repair during vegetative growth at a restrictive temperature. We cloned the MRE11 gene and found that it encodes a 643-amino acid protein with a highly acidic region containing a heptad repeat of Asp at its C-terminus and is located downstream of YMR44 near the RNA1 locus on the right arm of chromosome XIII. Transcripts of the MRE11 gene increased transiently and showed the same kinetics as that of the RAD50 gene during meiosis. In a mre11 disruption mutant (mre11::hisG), meiosis-specific double-strand break (DSB) formation is abolished. A comparison of the properties of mre11::hisG and a rad50 deletion mutant (rad50 delta) indicated that both mutants exhibited similar phenotypes in both meiosis and mitosis. Characterization of two double mutants, mre11::hisG rad50 delta and mre11::hisG rad50S, showed that MRE11 and RAD50 belong to the same epistasis group with respect to meiotic DSB formation and mitotic DNA repair. Using a two-hybrid system, we found that Mre11 interacts with Rad50 and itself in vivo. These results suggest that Mre11 and Rad50 proteins work in a complex in DSB formation and DNA repair during vegetative growth.

PMID:
7789757
[PubMed - indexed for MEDLINE]
PMCID:
PMC1206481
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk