Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Structure. 1995 Mar 15;3(3):265-78.

Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG.

Author information

  • 1Department of Molecular Biology, Uppsala University, Sweden.

Abstract

BACKGROUND:

Streptococcal protein G comprises two or three domains that bind to the constant Fc region of most mammalian immunoglobulin Gs (IgGs). Protein G is functionally related to staphylococcal protein A, with which it shares neither sequence nor structural homology.

RESULTS:

To understand the competitive binding of these two proteins to the Fc region, the crystal structure of a single Ig-binding domain of streptococcal protein G was determined at 3.5 A resolution in complex with the Fc fragment of human IgG and compared with the structures of protein A:Fc and protein G:Fab complexes. Protein G binds to the interface between the second and third heavy chain constant domains of Fc, which is roughly the same binding site used by protein A. Protein G comprises one alpha-helix packed onto a four-stranded beta-sheet. Residues from protein G that are involved in binding are situated within the C-terminal part of the alpha-helix, the N-terminal part of the third beta-strand and the loop region connecting these two structural elements. The identified Fc-binding region of protein G agrees well with both biochemical and NMR spectroscopic data. However, the Fc-binding helices of protein G and protein A are not superimposable.

CONCLUSIONS:

Protein G and protein A have developed different strategies for binding to Fc. The protein G:Fc complex involves mainly charged and polar contacts, whereas protein A and Fc are held together through non-specific hydrophobic interactions and a few polar interactions. Several residues of Fc are involved in both the protein G:Fc and the protein A:Fc interaction, which explains the competitive binding of the two proteins. The apparent differences in their Fc-binding activities result from additional unique interactions.

PMID:
7788293
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk