Double bond removal from odd-numbered carbons during peroxisomal beta-oxidation of arachidonic acid requires both 2,4-dienoyl-CoA reductase and delta 3,5,delta 2,4-dienoyl-CoA isomerase

J Biol Chem. 1995 Jun 9;270(23):13771-6. doi: 10.1074/jbc.270.23.13771.

Abstract

The pathway for the peroxisomal beta-oxidation of arachidonic acid (5,8,11,14-20:4) was elucidated by comparing its metabolism with 4,7,10-hexadecatrienoic acid (4,7,10-16:3) and 5,8-tetradecadienoic acid (5,8-14:2) which are formed, respectively, after two and three cycles of arachidonic acid degradation. When [1-14C]4,7,10-16:3 was incubated with peroxisomes in the presence of NAD+ and NADPH, it resulted in a time-dependent increase in the production of acid-soluble radioactivity which was accompanied by the synthesis of 2-trans-4,7,10-hexadecatetraenoic acid and two 3,5,7,10-hexadecatetraenoic acid isomers. The formation of conjugated trienoic acids suggests that peroxisomes contain delta 3,5,delta 2,4-dienoyl-CoA isomerase with the ability to convert 2-trans-4,7,10-hexadecatetraenoic acid to 3,5,7,10-hexadecatetraenoic acid. When 1-14C-labeled 6,9,12-octadecatrienoic acid or 7,10,13,16-docosatetraenoic acid was incubated without nucleotides, the 3-hydroxy metabolites accumulated, since further degradation requires NAD(+)-dependent 3-hydroxyacyl-CoA dehydrogenase. When [1-14C]5,8,11,14-20:4 was incubated under identical conditions, no polar metabolite was detected, but 2-trans-4,8,11,14-eicosapentaenoic acid accumulated. When NADPH was added to incubations, 3-hydroxy-8,11,14-eicosatrienoic, 2-trans-4,8,11,14-eicosapentaenoic, 2-trans-8,11,14-eicosatetraenoic, and 8,11,14-eicosatrienoic acids were produced. Analogous compounds were formed from [1-14C]5,8-14:2. Our results show that the removal of double bonds from odd-numbered carbons in arachidonic acid thus requires both NADPH-dependent 2,4-dienoyl-CoA reductase and delta 3,5,delta 2,4-dienoyl-CoA isomerase. One complete cycle of 5,8-14:2 and 5,8,11,14-20:4 beta-oxidation yields, respectively, 6-dodecenoic and 6,9,12-octadecatrienoic acids.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arachidonic Acid / metabolism*
  • Carbon-Carbon Double Bond Isomerases*
  • Fatty Acid Desaturases / physiology*
  • Isomerases / physiology*
  • Male
  • Microbodies / metabolism*
  • NADP / metabolism
  • Oxidation-Reduction
  • Oxidoreductases Acting on CH-CH Group Donors*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Arachidonic Acid
  • NADP
  • Fatty Acid Desaturases
  • Oxidoreductases Acting on CH-CH Group Donors
  • 2,4-dienoyl-CoA reductase
  • Isomerases
  • Carbon-Carbon Double Bond Isomerases
  • delta(3,5),delta(2,4)-dienoyl-CoA isomerase