Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 1995 Jun 1;308 ( Pt 2):653-8.

Effects of magnesium on cyclic GMP hydrolysis by the bovine retinal rod cyclic GMP phosphodiesterase.

Author information

  • 1College of Optometry, University of Houston, TX 77204-6052, USA.


Knowledge of the kinetics of the rod cyclic GMP phosphodiesterase is essential for understanding the kinetics and gain of the light response. Therefore, the interactions between Mg2+, cyclic GMP, and purified, trypsin-activated bovine rod cyclic GMP phosphodiesterase (EC were examined. The effects of Mg2+ and of cyclic GMP on the rod phosphodiesterase activity were mutually concentration-dependent. Formation of a free Mg-cyclic GMP complex is unlikely due to its high dissociation constant (Kd = 19 mM). Plots of 1/velocity versus 1/[cyclic GMP] as a function of [Mg2+] and 1/velocity versus 1/[Mg2+] as a function of [cyclic GMP] intersected to the left of the 1/velocity axis. This is consistent with the formation of a ternary complex between the phosphodiesterase, Mg2+, and cyclic GMP. A competitive inhibitor of the phosphodiesterase relative to cyclic GMP, 3-isobutyl-1-methylxanthine, non-competitively inhibited the enzyme relative to Mg2+, Pb2+, a competitive inhibitor of the phosphodiesterase relative to Mg2+ [D. Srivastava, R.L. Hurwitz and D. A. Fox (1995) Toxicol. Appl. Pharmacol, in the press] non-competitively inhibited the enzyme relative to cyclic GMP. Collectively these results are suggestive of a rapid equilibrium random binding order of Mg2+ and cyclic GMP to the rod phosphodiesterase.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk