Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1995 May 12;270(19):11119-29.

Position-independent expression of whey acidic protein transgenes.

Author information

  • 1Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.


The expression of a 3-kilobase genomic rat whey acidic protein (WAP) clone (-949/+2020) in transgenic mice has been demonstrated previously to be copy number-dependent and independent of the site of integration (Dale, T., Krnacik, M. J., Schmidhauser, C., Yang, C. Q.-L., Bissell, M. J., and Rosen, J. M. (1992) Mol. Cell. Biol. 12, 905-914). The present study demonstrated that position-independent expression of the rat WAP -949/+2020 transgene was dependent on transgene spacing. Position-independent expression also was inhibited by an internal replacement of 49 base pair within the conserved GC-rich 3'-untranslated region (3'-UTR) with an identically sized nonspecific DNA sequence. Using electrophoretic mobility shift assays, nuclear factors isolated from mouse and human cells were shown to associate specifically with the rWAP 3'-UTR DNA, but not with the 3'-UTR containing the internal replacement or specific point mutations. Since a single copy of the 3'-UTR inserted 5' of the promoter could not rescue the 3'-UTR deletion, the 3'-UTR element does not appear to be functioning as either a classic enhancer or insulator element. However, the level of expression of rWAP transgenes was correlated with transgene association with the chromosomal scaffold in vivo.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk