Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Bone. 1995 Jan;16(1):119-24.

Dexamethasone effects on mechanical, geometric and densitometric properties of rat femur diaphyses as described by peripheral quantitative computerized tomography and bending tests.

Author information

  • 1Centro de Estudios de Metabolismo Fosfocálcio (CEMFoC), Universidad Nacional de Rosario, Argentina.


In previous studies with cortisol, betamethasone and oxazacort we attributed glucocorticoid effects on bone biomechanics to changes in bone mass and geometry rather than to an action on bone material properties. In this experiment, groups of 7 rats each received subcutaneous doses of 15.6, 31.2, 62.5, 125, 250, 500 or 1000 micrograms/kg per day of dexamethasone (DMS) and an additional 14 animals were controlled untreated for 4 weeks. Their fresh femurs were then scanned by peripheral quantitative computerized tomography (pQCT; XCT-960, Stratec, Germany) at the midshaft and submitted to three-point bending tests. In consonance with our earlier investigations, a significant, log-dose-related reduction in bone load-bearing capacity was observed, associated with an impairment in bone geometric properties (cross-sectional area and moment of inertia) and in body weight gain. However, the pQCT-assessed volumetric mineral density of cortical bone (vCtBMD; regarded as a material quality indicator in terms of mineralization) was significantly reduced by DMS following a dose-response relationship. Furthermore, a direct association was detected between vCtBMD and diaphyseal load-bearing capacity and stiffness. In contrast with our previous approach, data suggests that, apart from changes in bone geometric properties, glucocorticoid effects on bone material quality--as assessed by vCtBMD changes in this study--seem also to play a significant role in the determination of their biomechanical consequences.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk