Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes

J Physiol. 1995 Feb 1;482 ( Pt 3)(Pt 3):533-53. doi: 10.1113/jphysiol.1995.sp020538.

Abstract

1. Ca2+ liberation induced in Xenopus oocytes by a poorly metabolized derivative of inositol 1,4,5-trisphosphate (3-deoxy-3-fluoro-D-myo-inositol 1,4,5-trisphosphate; 3-F-InsP3) was visualized using a video-rate confocal microscope to image fluorescence signals reported by the indicator dye calcium green-1. 2. Low (10-30 nM) intracellular concentrations of 3-F-InsP3 evoked Ca2+ release as localized transient 'puffs'. Progressively higher concentrations (30-60 nM) gave rise to abortive Ca2+ waves triggered by puffs, and then (> 60 nM) to a sustained elevation of Ca2+ followed by the appearance of propagating Ca2+ waves. At concentrations up to that giving waves, the frequency of puffs increased as about the third power of [InsP3], whereas their amplitudes increased only slightly. 3. The rise of cytosolic Ca2+ during a puff began abruptly, and peaked within about 50 ms. The peak free Ca2+ level was about 180 nM, and the total amount of Ca2+ liberated was several attomoles (10(-18) mol), too much to be accounted for by opening of a single InsP3-gated channel. The subsequent decline of Ca2+ occurred over a few hundred milliseconds, determined largely by diffusion of Ca2+ away from the release site, rather than by resequestration. Lateral spread of Ca2+ was restricted to a few micrometres, consistent with an effective diffusion coefficient for Ca2+ ions of about 27 microns2 s-1. 4. The peak amplitudes of puffs recorded at a given site were distributed in a roughly Gaussian manner, and a small proportion of sites consistently gave puffs much larger than the main population. Intervals between successive puffs at a single site were exponentially distributed, except for a progressive fall-off in puffs seen at intervals shorter than about 10 s. Thus, triggering of puffs appeared to be stochastically determined after recovery from a refractory period. 5. There was little correlation between the occurrence of puffs at sites more than a few micrometres apart, indicating that puff sites can function autonomously, but closely (ca 2 microns) adjacent sites showed highly correlated behaviour. 6. Puffs arose from sites-present at a density of about 1 per 30 microns2 in the animal hemisphere, located within a narrow band about 5-7 microns below the plasma membrane. 7. We conclude that Ca2+ puffs represent a 'quantal' unit of InsP3-evoked Ca2+ liberation, which may arise because local regenerative feedback by cytosolic Ca2+ ions causes the concerted opening of several closely clustered InsP3 receptor channels.

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Cell Membrane / metabolism
  • Cytosol / drug effects
  • Cytosol / metabolism
  • Diffusion
  • Feedback / physiology
  • Image Processing, Computer-Assisted
  • Inositol 1,4,5-Trisphosphate / metabolism
  • Inositol 1,4,5-Trisphosphate / pharmacology*
  • Microscopy, Confocal
  • Oocytes / drug effects
  • Oocytes / metabolism*
  • Ultraviolet Rays
  • Xenopus laevis

Substances

  • Inositol 1,4,5-Trisphosphate
  • Calcium