Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1995 Apr 14;270(15):8389-92.

Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.

Abstract

The archaeon Pyrococcus furiosus grows optimally at 100 degrees C by the fermentation of carbohydrates to yield acetate, CO2, and H2. Cell-free extracts contain very low activity of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, but extremely high activity of glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR). GAPOR was purified under strictly anaerobic conditions. It is a monomeric, O2-sensitive protein of M(r) approximately 63,000 which contains pterin and approximately 1 tungsten and 6 iron atoms per molecule. The enzyme oxidized glyceraldehyde-3-phosphate (Km 28 microM) to 3-phosphoglycerate and reduced P. furiosus ferredoxin (Km 6 microM), but it did not oxidize formaldehyde, acetaldehyde, glyceraldehyde, benzaldehyde, glucose, glucose 6-phosphate, or glyoxylate, nor did it use NAD(P) as an electron acceptor. It is proposed that GAPOR has a glycolytic role and functions in place of glyceraldehyde-3-phosphate dehydrogenase and possibly phosphoglycerate kinase.

PMID:
7721730
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk