Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1995 Apr 14;270(15):8389-92.

Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.


The archaeon Pyrococcus furiosus grows optimally at 100 degrees C by the fermentation of carbohydrates to yield acetate, CO2, and H2. Cell-free extracts contain very low activity of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, but extremely high activity of glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR). GAPOR was purified under strictly anaerobic conditions. It is a monomeric, O2-sensitive protein of M(r) approximately 63,000 which contains pterin and approximately 1 tungsten and 6 iron atoms per molecule. The enzyme oxidized glyceraldehyde-3-phosphate (Km 28 microM) to 3-phosphoglycerate and reduced P. furiosus ferredoxin (Km 6 microM), but it did not oxidize formaldehyde, acetaldehyde, glyceraldehyde, benzaldehyde, glucose, glucose 6-phosphate, or glyoxylate, nor did it use NAD(P) as an electron acceptor. It is proposed that GAPOR has a glycolytic role and functions in place of glyceraldehyde-3-phosphate dehydrogenase and possibly phosphoglycerate kinase.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk