Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Physiol. 1995 Jan 15;482 ( Pt 2):449-54.

The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study.

Author information

  • 1Department of Pharmacology, University of Cambridge, UK.

Abstract

1. The delta F508 mutation of the cystic fibrosis (CF) gene is of high frequency in man (1 in 25) and in homozygotes causes cystic fibrosis. It is suggested that cystic fibrosis heterozygotes withstand secretory diarrhoea better than normal individuals and so are genetically advantaged. This hypothesis has been examined by measuring electrogenic chloride secretion in gut epithelia of normal and heterozygous CF mice. 2. Chloride secretory responses of normal and heterozygous colonic epithelia to forskolin, vasoactive intestinal polypeptide (VIP), isoprenaline, cholera toxin, heat-stable enterotoxin (STa), guanylin, carbachol and lysylbradykinin were examined. No significant differences in responses of tissues of the two genotypes were found. 3. Responses of normal and heterozygous ileal epithelia to forskolin and glucose were investigated. Heterozygous tissues responded as well as normal tissues. 4. Frusemide (furosemide) caused virtually identical inhibition of the chloride secretory responses to forskolin in colonic epithelia of both genotypes. 5. No evidence to support the genetic advantage hypothesis in ileal or colonic epithelia of the null CF mouse has been found, at least for acute responses. If the hypothesis is true then either (a) other non-cystic fibrosis transmembrane conductance regulator (non-CFTR) transport processes are involved, (b) prolonged exposure to secretagogues is required, or (c) delta F508 CFTR is responsible for the protective effect.

PMID:
7714835
[PubMed - indexed for MEDLINE]
PMCID:
PMC1157742
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk