Natural selection at the class II major histocompatibility complex loci of mammals

Philos Trans R Soc Lond B Biol Sci. 1994 Nov 29;346(1317):359-66; discussion 366-7. doi: 10.1098/rstb.1994.0153.

Abstract

The role of natural selection at major histocompatibility complex (MHC) loci was studied by analysis of molecular sequence data from mammalian class II MHC loci. As found previously for the class I MHC molecule and a hypothetical model of the class II molecule, the rate of non-synonymous nucleotide substitution exceeded that of synonymous substitution in the codons encoding the antigen recognition site of polymorphic class II molecules. This pattern is evidence that the polymorphism at these loci is maintained by a form of balancing selection, such as overdominant selection. By contrast, in the case of monomorphic class II loci, no such enhancement of the rate of non-synonymous substitution was observed. Phylogenetic analysis indicates that, in contrast to monomorphic ('non-classical') class I MHC loci, some monomorphic class II loci of mammals are quite ancient. The DMA and DMB loci, for example, diverged before all other known mammalian class II loci, possibly before the divergence of tetrapods from bony fishes. Analysis of the patterns of sharing of polymorphic residues at class II MHC loci by mammals of different species revealed that extensive convergent evolution has occurred at these loci; but no support was found for the hypothesis that MHC polymorphisms have been maintained since before the divergence of orders of eutherian mammals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Histocompatibility Antigens Class II / genetics*
  • Humans
  • Mammals
  • Phylogeny
  • Polymorphism, Genetic
  • Selection, Genetic*
  • Sequence Analysis

Substances

  • Histocompatibility Antigens Class II