Display Settings:

Format

Send to:

Choose Destination
Development. 1995 Aug;121(8):2491-500.

The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans.

Author information

  • 1Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

Abstract

A hierarchy of heterochronic genes, lin-4, lin-14, lin-28 and lin-29, temporally restricts terminal differentiation of Caenorhabditis elegans hypodermal seam cells to the final molt. This terminal differentiation event involves cell cycle exit, cell fusion and the differential regulation of genes expressed in the larval versus adult hypodermis. lin-29 is the most downstream gene in the developmental timing pathway and thus it is the most direct known regulator of these diverse processes. We show that lin-29 encodes a protein with five zinc fingers of the (Cys)2-(His)2 class and thus likely controls these processes by regulating transcription in a stage-specific manner. Consistent with this role, a lin-29 fusion protein binds in vitro to the 5' regulatory sequences necessary in vivo for expression of col-19, a collagen gene expressed in the adult hypodermis. lin-29 mRNA is detected in the first larval stage and increases in abundance through subsequent larval stages until the final molt, when lin-29 activity is required for terminal differentiation.

PMID:
7671813
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk