Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1995 Sep;177(17):4857-64.

Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli.

Author information

  • 1Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA.

Abstract

Escherichia coli mutants with defined mutations in specific mod genes that affect molybdate transport were isolated and analyzed for the effects of particular mutations on the regulation of the mod operon as well as the fdhF and hyc operons which code for the components of the formate hydrogenlyase (FHL) complex. phi (hyc'-'lacZ+) mod double mutants produced beta-galactosidase activity only when they were cultured in medium supplemented with molybdate. This requirement was specific for molybdate and was independent of the moa, mob, and moe gene products needed for molybdopterin guanine dinucleotide (MGD) synthesis, as well as Mog protein. The concentration of molybdate required for FHL production by mod mutants was dependent on medium composition. In low-sulfur medium, the amount of molybdate needed by mod mutants for the production of half-maximal FHL activity was increased approximately 20 times by the addition of 40 mM of sulfate, mod mutants growing in low-sulfur medium transported molybdate through the sulfate transport system, as seen by the requirement of the cysA gene product for this transport. In wild-type E. coli, the mod operon is expressed at very low levels, and a mod+ merodiploid E. coli carrying a modA-lacZ fusion produced less than 20 units of beta-galactosidase activity. This level was increased by over 175 times by a mutation in the modA, modB, or modC gene. The addition of molybdate to the growth medium of a mod mutant lowered phi (modA'-'lacZ+) expression. Repression of the mod operon was sensitive to molybdate but was insensitive to mutations in the MGD synthetic pathway. These physiological and genetic experiments show that molybdate can be transported by one of the following three anion transport system in E. coli: the native system, the sulfate transport system (cysTWA gene products), and an undefined transporter. Upon entering the cytoplasm, molybdate branches out to mod regulation, fdhF and hyc activation, and metabolic conversion, leading to MGD synthesis and active molybdoenzyme synthesis.

PMID:
7665461
[PubMed - indexed for MEDLINE]
PMCID:
PMC177258
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk