Human embryonic zeta-globin gene expression in mouse-human hybrid erythroid cell lines

Blood. 1995 Aug 1;86(3):1212-7.

Abstract

The human alpha-globin-like embryonic zeta-globin chains are present in abundance during the first 5 to 6 weeks of gestation. Subsequently, zeta-globin chains are present in fetal blood at a very low level, which is supplanted by the expression of alpha-globin chains. Adult individuals who are carriers of the (--SEA/) alpha-thalassemia deletion, in contrast to normal adults, have low levels of embryonic zeta-globin chains in their circulating erythrocytes. In this investigation, we constructed stable mouse-human hybrid cells with murine erythroleukemia cells bearing human chromosome 16, with either the normal alpha-globin gene cluster (alpha alpha/) or the (--SEA/) type of alpha-thalassemia deletion. The results on the human zeta-globin gene expression in these hybrid cells indicate that murine adult erythroid transcription factors can induce the expression of human embryonic zeta-globin gene is cis to the (--SEA/) deletion, in parallel with the endogenous mouse alpha-globin gene expression. These data also show the importance of the DNA sequences within the (--SEA) deletion in regulating the expression of zeta-globin gene in cis during normal human hemoglobin ontogeny.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Erythroid Precursor Cells / physiology*
  • Gene Expression
  • Globins / genetics*
  • Humans
  • Hybrid Cells
  • Mice
  • RNA, Messenger / genetics
  • Regulatory Sequences, Nucleic Acid
  • Sequence Deletion

Substances

  • RNA, Messenger
  • Globins