Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 1995 Jun 25;23(12):2184-91.

Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier.

Author information

  • 1Department of Cellular and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden.

Abstract

Oligonucleotides which form triple helical complexes on double-stranded DNA have been previously reported to selectively inhibit transcription both in vitro and in vivo by physically blocking RNA polymerase or transcription factor access to the DNA template. Here we show that a 16mer oligonucleotide, which forms triple helix DNA by binding to a 16 bp homopurine segment, alters the formation of histone-DNA contacts during in vitro nucleosome reconstitution. This effect was DNA sequence-specific and required the oligonucleotide to be present during in vitro nucleosome reconstitution. Binding of the triple helix oligonucleotide on a 199 bp mouse mammary tumour virus promoter DNA fragment with a centrally located triplex DNA resulted in interruption of histone-DNA contacts flanking the triplex DNA segment. When nucleosome reconstitution is carried out on a longer, 279 bp DNA fragment with an asymmetrically located triplex site, nucleosome formation occurred at the border of the triple helical DNA. In this case the triplex DNA functioned as a nucleosome barrier. We conclude that triplex DNA cannot be accommodated within a nucleosome context and thus may be used to site-specifically manipulate nucleosome organization.

PMID:
7610046
[PubMed - indexed for MEDLINE]
PMCID:
PMC307006
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk