Send to

Choose Destination
See comment in PubMed Commons below
J Immunol Methods. 1995 Sep 25;185(2):181-90.

Prediction of binding to MHC class I molecules.

Author information

  • 1Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.


The binding of antigenic peptide sequences to major histocompatibility complex (MHC) molecules is a prerequisite for stimulation of cytotoxic T cell responses. Neural networks are here used to predict the binding capacity of polypeptides to MHC class I molecules encoded by the gene HLA-A*0201. Given a large database of 552 nonamers and 486 decamers and their known binding capacities, the neural networks achieve a predictive hit rate of 0.78 for classifying peptides which might induce an immune response (good or intermediate binders) vs. those which cannot (weak or non-binders). The neural nets also depict specific motifs for different binding capacities. This approach is in principle applicable to all MHC class I and II molecules, given a suitable set of known binding capacities. The trained networks can then be used to perform a systematic search through all pathogen or tumor antigen protein sequences for potential cytotoxic T lymphocyte epitopes.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk