Display Settings:

Format

Send to:

Choose Destination
Int Rev Cytol. 1995;160:99-161.

Molecular mechanisms for passive and active transport of water.

Author information

  • Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.

Abstract

Water crosses cell membranes by passive transport and by secondary active cotransport along with ions. While the first concept is well established, the second is new. The two modes of transport allow cellular H2O homeostasis to be viewed as a balance between H2O leaks and H2O pumps. Consequently, cells can be hyperosmolar relative to their surroundings during steady states. Under physiological conditions, cells from leaky epithelia may be hyperosmolar by roughly 5 mosm liter-1, under dilute conditions, hyperosmolarities up to 40 mosm liter-1 have been recorded. Most intracellular H2O is free to serve as solvent for small inorganic ions. The mechanism of transport across the membrane depends on how H2O interacts with the proteinaceous or lipoid pathways. Osmotic transport of H2O through specific H2O channels such as CHIP 28 is hydraulic if the pore is impermeable to the solute and diffusive if the pore is permeable. Cotransport of ions and H2O can be a result of conformational changes in proteins, which in addition to ion transport also translocate H2O bound to or occlude in the protein. A cellular model of a leaky epithelium based on H2O leaks and H2O pumps quantitatively predicts a number of so-far unexplained observations of H2O transport.

PMID:
7558688
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk