Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nature. 1995 Mar 2;374(6517):57-9.

Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily.

Author information

  • 1Department of Chemistry, ETH Z├╝rich, Switzerland.

Abstract

The sequences of proteins from ancient organisms can be reconstructed from the sequences of their descendants by a procedure that assumes that the descendant proteins arose from the extinct ancestor by the smallest number of independent evolutionary events ('parsimony'). The reconstructed sequences can then be prepared in the laboratory and studied. Thirteen ancient ribonucleases (RNases) have been reconstructed as intermediates in the evolution of the RNase protein family in artiodactyls (the mammal order that includes pig, camel, deer, sheep and ox). The properties of the reconstructed proteins suggest that parsimony yields plausible ancient sequences. Going back in time, a significant change in behaviour, namely a fivefold increase in catalytic activity against double-stranded RNA, appears in the RNase reconstructed for the founding ancestor of the artiodactyl lineage, which lived about 40 million years ago. This corresponds to the period when ruminant digestion arose in the artiodactyls, suggests that contemporary artiodactyl digestive RNases arose from a non-digestive ancestor, and illustrates how evolutionary reconstructions can help in the understanding of physiological function within a protein family.

Comment in

PMID:
7532788
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk