Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11527-31.

Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway.

Author information

  • 1Department of Genetics, Stanford University School of Medicine, CA 94305.


Studies presented here show that overall NF-kappa B signal transduction begins with a parallel series of stimuli-specific pathways through which cytokines (tumor necrosis factor alpha), oxidants (hydrogen peroxide and mitomycin C), and phorbol ester (phorbol 12-myristate 13-acetate) individually initiate signaling. These initial pathways culminate in a common pathway through which all of the stimulating agents ultimately signal NF-kappa B activation. We distinguish the stimuli-specific pathways by showing that the oxidative stimuli trigger NF-kappa B activation in only one of two human T-cell lines (Wurzburg but not Jurkat), whereas tumor necrosis factor alpha and phorbol 12-myristate 13-acetate readily stimulate in both lines. We propose the common pathway as the simplest way of accounting for the common requirements and properties of the signaling pathway. We include a redox-regulatory mechanism(s) in this common pathway to account for the previously demonstrated redox regulation of NF-kappa B activation in Jurkat cells (in which oxidants don't activate NF-kappa B); we put tyrosine phosphorylation in the common pathway by showing that kinase activity (inhibitable by herbimycin A and tyrphostin 47) is required for NF-kappa B activation by all stimuli tested in both cell lines. Since internal sites of oxidant production have been shown to play a key role in the cytokine-stimulated activation of NF-kappa B, and since tyrosine kinase and phosphatase activities are known to be altered by oxidants, these findings suggest that intracellular redox status controls NF-kappa B activation by regulating tyrosine phosphorylation event(s) within the common step of the NF-kappa B signal transduction pathway.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk