Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 1994 Mar 18;269(11):8324-33.

Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-gamma and bacterial lipopolysaccharide. Transcriptional and post-transcriptional regulation.

Author information

  • 1Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan.

Abstract

Production of nitric oxide (NO) by macrophages is enhanced upon activation by bacterial endotoxins and cytokines mainly via an increase of the intracellular content of the inducible isoform of nitric oxide synthase (i-NOS). We have studied in detail the effect of several modulators of macrophage activity on steady state levels of i-NOS mRNA in the mouse macrophage-like cell line RAW 264.7. Bacterial lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) were found to be effective inducers of i-NOS mRNA, in accordance with their known ability to stimulate both i-NOS activity and NO production in macrophages from different sources, while TNF-alpha, IL-1, or IL-6 was ineffective in this regard. Accumulation of i-NOS mRNA in response to either LPS or IFN-gamma stimulation was accompanied by increased i-NOS gene transcription, as detected both by using a nuclear "run-on" transcription assay and by transient transfection of the cloned gene promoter in RAW 264.7 cells. Co-stimulation of the cells with both inducers resulted in higher steady state levels of i-NOS mRNA in the absence, however, of a corresponding potentiation of the rate of gene transcription. This was due primarily to a considerable effect of LPS on i-NOS mRNA stability, with prolongation of its half-life from 1-1.5 h, in the presence of IFN-gamma alone, to 4-6 h in the presence of both LPS and IFN-gamma.

PMID:
7510685
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk