Display Settings:


Send to:

Choose Destination
Nucleic Acids Res. 1995 Nov 11;23(21):4391-9.

Tm studies of a tertiary structure from the human hepatitis delta agent which functions in vitro as a ribozyme control element.

Author information

  • 1Department of Medicine, Mount Sinai Medical Center, New York, NY 10029, USA.


Viroids and other circular subviral RNA pathogens, such as the hepatitis delta agent, use a rolling circle replication cycle requiring an intact circular RNA. However, many infectious RNAs have the potential to form self-cleavage structures, whose formation must be controlled in order to preserve the circular replication template. The native structure of delta RNA contains a highly conserved element of local tertiary structure which is composed of sequences partially overlapping those needed to form the self-cleavage motif. A bimolecular complex containing the tertiary structure can be made. We show that when it is part of this bimolecular complex the potential cleavage site is protected and is not cleaved by the delta ribozyme, demonstrating that the element of local tertiary structure can function as a ribozyme control element in vitro. Physical studies of the complex containing this element were carried out. The complex binds magnesium ions and is not readily dissociated by EDTA under the conditions tested; > 50% of the complexes remain following incubation in 1 mM EDTA at 60 degrees C for 81 min. The thermal stability of the complex is reduced in the presence of sodium ions. A DNA complex and a perfect RNA duplex studied in parallel showed a similar effect, but of lesser magnitude. The RNA complex melts at temperatures approximately 10 degrees C lower in buffers containing 0.5 mM MgCl2 and 100 mM NaCl than in buffers containing 0.5 mM MgCl2 with no NaCl (78.1 compared with 87.7 degrees C). The element of local tertiary structure in delta genomic RNA appears to be a molecular clamp whose stability is highly sensitive to ion concentration in the physiological range.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk