Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 1995 Jun;140(2):443-56.

Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependence on the REV3 gene product, a putative nonessential DNA polymerase.

Author information

  • 1Department of Microbiology, University of Manitoba, Winnipeg, Canada.

Abstract

The Saccharomyces cerevisiae rad6, rad18, and rad52 mutants exhibit DNA repair deficiencies and distinct mutator phenotypes. DNA replication past unrepaired spontaneous damage might contribute to the specificities of these mutators. Because REV3 is thought to encode a DNA polymerase that specializes in translesion synthesis, we determined the REV3 dependence of the rad mutator specificities. Spontaneous mutagenesis at a plasmid-borne SUP4-o locus was examined in isogenic strains having combinations of normal or mutant REV3 and RAD6, RAD18, or RAD52 alleles. For the rad6 and rad18 mutators, the mutation rate increase relied largely, but not exclusively, on REV3 whereas the rad52 mutator was entirely REV3 dependent. The influence of REV3 on the specificity of the rad6 mutator differed markedly depending on the mutational class examined. However, the requirement of rev3 for the production of G.C-->T.A transversions by the rad18 mutator, which induces only these substitutions, was similar to that for rad6-mediated G.C-->T.A transversion. This supports a role for the Rad6-Rad18 protein complex in the control of spontaneous mutagenesis. The available data imply that the putative Rev3 polymerase can process a variety of spontaneous DNA lesions that normally are substrates for error-free repair.

PMID:
7498727
[PubMed - indexed for MEDLINE]
PMCID:
PMC1206625
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk