Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1995 Oct;15(10):6377-88.

Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate.

Author information

  • 1Center for the Study of Nervous System Injury, Washington University Medical School, St. Louis, Missouri 63130, USA.

Abstract

Increasing evidence suggests that glutamate neurotoxicity is partly mediated by reactive oxygen species, formed as a consequence of several processes, including arachidonic acid metabolism and nitric oxide production. Here we used an oxidation-sensitive indicator, dihydrorhodamine 123, in combination with confocal microscopy, to examine the hypothesis that electron transport by neuronal mitochondria may be an important source of glutamate-induced reactive oxygen species (ROS). Exposure to NMDA, but not kainate, ionomycin, or elevated potassium stimulated oxygen radical production in cultured murine cortical neurons, demonstrated by oxidation of nonfluorescent dihydrorhodamine 123 to fluorescent rhodamine 123. Electron paramagnetic resonance spectroscopy studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a radical-trapping agent, also showed production of ROS by cortical neurons after NMDA but not kainate exposure. NMDA-induced ROS production depended on extracellular Ca2+, and was not affected by inhibitors of nitric oxide synthase or arachidonic acid metabolism. The increased production of ROS was blocked by inhibitors of mitochondrial electron transport, rotenone or antimycin, and mimicked by the electron transport uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone. These data support the possibility that NMDA receptor-mediated, Ca(2+)-dependent uncoupling of neuronal mitochondrial electron transport may contribute to the oxidative stress initiated by glutamate exposure.

PMID:
7472402
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk