Preferred conformation of the benzyloxycarbonyl-amino group in peptides

Int J Pept Protein Res. 1983 Feb;21(2):163-81. doi: 10.1111/j.1399-3011.1983.tb03090.x.

Abstract

Structural parameters, derived from X-ray crystallographic data, have been compiled for 35 derivatives of amino acids, peptides, and related compounds, which contain the N-terminal benzyloxycarbonyl (Z) group. The geometry of the urethane moiety of this end group is closely similar to that of the tert-butoxycarbonyl (Boc) group, except for a relaxation of some bond angles because the Z group is sterically less crowded than the Boc group. For the same reason, the Z group has greater conformational flexibility. As a result, packing forces in the crystal may cause greater deformations of bond angles, resulting in larger variations of observed bond lengths and bond angles than in Boc-peptide crystals. The aromatic rings of the Z end groups tend to stack in crystals. Conformational energy calculations indicate that most conformations of Z-amino acid-N'-methylamides and of corresponding Boc derivatives have similar dihedral angles and relative energies, i.e. the nature of the N-terminal end group has little effect on the conformational preferences of the residue next to it. In particular, the computed fraction of molecules with a cis urethane (C-N) bond is similar for the two derivatives: 0.51 and 0.42 in Boc-Pro-NHCH3 and Z-Pro-NHCH3, respectively, and 0.02 in the two Ala derivatives. There exist several computed conformations of Z-Ala-NHCH3 and Z-Pro-NHCH3 in which the phenyl ring and the C-terminal methylamide group are close to each other. Because of favorable nonbonded interactions, such conformations are of low energy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acids*
  • Hydrogen Bonding
  • Indicators and Reagents*
  • Molecular Conformation
  • Peptides*
  • Protein Conformation*
  • Structure-Activity Relationship
  • X-Ray Diffraction

Substances

  • Amino Acids
  • Indicators and Reagents
  • Peptides