Properties of dopamine agonist and antagonist binding sites in mammalian retina

Brain Res. 1980 Aug 4;194(2):403-18. doi: 10.1016/0006-8993(80)91221-4.

Abstract

Retinal homogenates of calf, rat, rabbit and Cebus appella and Macaca mulata monkeys were found to contain stereospecific binding sites for the dopamine antagonist [3H]spiroperidol. In further studies with calf and rat retina, stereospecific binding sites were also found for the dopamine agonist [3H]ADTN (2-amino-6,7,-dihydroxy-1,2,3,4-tetrahydronapththalene). The [3H]spiroperidol binding sites in calf retina were pharmacologically similar to the dopaminergic spiroperidol binding sites previously demonstrated to be present in striatum. However, calf and rabbit retina contained less than 1/10 the concentration of [3H]spiroperidol binding sites found in striatum. Saturation studies and Scatchard analyses showed a single class [3H]spiroperidol binding sites with Kd (apparent dissociation constant) = 0.3 and 0.2 nM and Bmax (binding site number) = 38 and 24 fmol/mg protein in calf retina and rabbit retina respectively. Rates of [3H]spiroperidol association and dissociation were also evaluated in calf retina. Drug specificity for [3H]ADTN binding in calf retina resembled that previously reported for striatal [3H]ADTN binding and thus differed from retinal [3H]spiroperidol binding. Calf retinal [3H]ADTN binding sites had a Kd = 9 nM and Bmax = 113 +/- 12 fmol/mg protein. Thus, the total number of [3H]ADTN sites in retina was at least twice that of [3H]spiroperidol sites. Guanine nucleotides (GTP and Gpp (NH)p) but not ATP reduced the affinity of the dopamine agonist ADTN for [3H]spiroperidol binding, and also reduced the specific binding of [3H]ADTN itself up to a maximal value of about 50% of control binding. Saturation studies of calf retinal [3H]ADTN binding confirmed that Gpp(NH)p-displaceable sites were a discrete saturable subset of stereospecific [3H]ADTN sites with Kd = 9 nM and Bmax = 50 +/- 6 fmol/mg protein. The Gpp(NH)p insensitive sites had a Kd = 9 nM and Bmax = 63 +/- 7 fmol/mg protein. It is proposed that although [3H]ADTN sites differ pharmacologically from [3H]spiroperidol sites, since [3H]spiroperidol sites are guanine nucleotide-sensitive and similar in number to the guanine nucleotide-sensitive class of [3H]ADTN sites, they may possibly be related to these sites as well as to adenylate cyclase. In addition, retina contains guanine nucleotide-insenstive [3H]ADTN sites, possibly presynaptic and probably not coupled to adenylate cyclase.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / pharmacology
  • Animals
  • Binding, Competitive / drug effects
  • Butyrophenones / metabolism*
  • Cattle
  • Dopamine / metabolism
  • Guanosine Triphosphate / pharmacology
  • Haplorhini
  • Lysergic Acid Diethylamide / metabolism
  • Macaca mulatta
  • Naphthalenes / metabolism*
  • Rabbits
  • Rats
  • Receptors, Dopamine / drug effects
  • Receptors, Dopamine / metabolism*
  • Retina / drug effects
  • Retina / metabolism*
  • Spiperone / metabolism*
  • Stereoisomerism
  • Tetrahydronaphthalenes / metabolism*

Substances

  • Butyrophenones
  • Naphthalenes
  • Receptors, Dopamine
  • Tetrahydronaphthalenes
  • Spiperone
  • Guanosine Triphosphate
  • Adenosine Triphosphate
  • Lysergic Acid Diethylamide
  • Dopamine