Secretion of leukotriene C and other arachidonic acid metabolites by macrophages challenged with immunoglobulin E immune complexes

J Exp Med. 1982 Oct 1;156(4):1077-86. doi: 10.1084/jem.156.4.1077.

Abstract

Resident mouse peritoneal macrophages release the slow-reacting substance leukotriene C (LTC) on exposure to particulate IgE immune complexes. Because these cells lose their responsiveness to an IgE stimulus after 4 h in culture, maximum release of 20:4 metabolites is observed before this time. However, a similar diminution in 20:4 metabolism was not observed with a zymosan stimulus. Freshly explanted cells are deficient in intracellular glutathione (GSH) (12.4 +/- 0.4 pmol/micrograms cell protein), but GSH increases to a steady state value of 30-35 pmol/micrograms of cell protein between 3 and 9 h of culture. Because GSH is required for the synthesis of LTC and prostaglandin (PG)E2, cultures challenged immediately after explanation have a diminished capacity to synthesize these 20:4 metabolites and release prostacyclin as the major product. By 4-5 h in culture, macrophages form significant amounts of LTC and PGE2. Under optimum conditions of maximum responsiveness to an IgE stimulus and GSH content (after 4 h of culture), macrophages challenged with latex beads coated with IgE immune complexes synthesize 1.0 +/- 0.3 pmol of LTC/microgram cell protein (60 +/- 18 pmol/10(6) cells) in addition to prostacyclin (8.2 +/- 0.8 pmol/micrograms cell protein) and PGE2 (4.7 +/- 1.5 pmol/micrograms cell protein). These amounts are quantitatively similar to the arachidonic acid metabolites produced by macrophages challenged with IgG immune complex-coated latex beads or zymosan. These data demonstrate that macrophages produce large quantities of LTC and other 20:4 metabolites in response to particle-bound IgE and antigen, provided that the appropriate in vitro conditions are met. The macrophage might, therefore, be a major source of slow-reacting substance and other 20:4 metabolites generated during IgE-mediated reactions in vivo.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigen-Antibody Complex
  • Cells, Cultured
  • Epoprostenol / metabolism*
  • Female
  • Immunoglobulin E / immunology*
  • Macrophages / metabolism*
  • Mice
  • Mice, Inbred ICR
  • Prostaglandins / metabolism*
  • Prostaglandins E / metabolism*
  • SRS-A / metabolism*
  • Time Factors

Substances

  • Antigen-Antibody Complex
  • Prostaglandins
  • Prostaglandins E
  • SRS-A
  • Immunoglobulin E
  • Epoprostenol