Send to:

Choose Destination
See comment in PubMed Commons below
Theor Popul Biol. 1984 Feb;25(1):1-20.

Risk spreading as an adaptive strategy in iteroparous life histories.


It has long been conjectured, though without satisfactory proof, that life tables with a long reproductive span are advantageous in an environment where fecundity or immature survival rates fluctuate randomly. In the present analysis we recast the nonlinear Leslie matrix problem as an autoregressive time series model for the birth rate, with random addition and removal of newborn. This transformation renders the model linear with respect to the environmental variation, allowing ready solution for the ultimate population size and for the conditions resulting in stationarity of the population distribution. We show that for life tables where the fecundities of all adult age classes are the same (no restrictions are put on the survivorship schedule, or on the age at first reproduction), and where density dependence operates via total adult density, the realized growth rate is less than the growth rate calculated from the mean Leslie matrix associated with the population's growth history. The degree of the discrepancy increases with the environmental variability, and decreases with iteroparity, thus completing a proof which confirms the correctness of the initial conjecture for a class of biologically reasonable life-table models.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk