Send to

Choose Destination
See comment in PubMed Commons below
Mol Biochem Parasitol. 1983 Aug;8(4):325-37.

Purine salvage by Tritrichomonas foetus.


The anaerobic protozoon Tritrichomonas foetus was found incapable of de novo purine synthesis by its failure to incorporate radiolabeled glycine or formate into the nucleotide pool. It had, on the other hand, high activities in incorporating adenine, hypoxanthine or inosine. Radiolabel pulse-chase experiments indicated that adenine, hypoxanthine and inosine all entered the pool through conversion to IMP. The parasite contained hypoxanthine phosphoribosyl transferase, adenine deaminase and inosine phosphorylase, but no adenine phosphoribosyl transferase, inosine kinase or inosine phosphotransferase activity. Adenine and inosine had to be converted to hypoxanthine before incorporation. Adenosine was also rapidly converted to hypoxanthine in T. foetus cell-free extracts, but the presence of adenosine kinase in the parasite allowed some conversion of adenosine directly to AMP. Guanine and xanthine were directly incorporated into GMP and XMP, probably due to the guanine and xanthine phosphoribosyl transferase. There were also strong enzyme activities which convert guanosine to guanine and guanine to xanthine. A guanosine phosphotransferase was found in the 10(5) X g sedimentable fraction of T. foetus, and was capable of converting some guanosine to GMP. This network of T. foetus purine salvage suggests the importance of hypoxanthine-guanine-xanthine phosphoribosyl transferase activities in the parasite.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk