Display Settings:


Send to:

Choose Destination
J Comp Neurol. 1984 Dec 10;230(3):311-36.

Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus).


Interhemispheric connections of visual cortex were studied in owl monkeys, marmosets, and galagos after multiple injections of horseradish peroxidase into one cerebral hemisphere. Areal patterns of connections were revealed in sections of cortex that was flattened and cut parallel to the surface. Results were related to the locations of known visual areas, especially in owl monkeys, in which more visual areas have been established. The connection patterns in owl monkeys and marmosets are very similar, suggesting that the organization of visual cortex differs little in these two New World simians. Galagos have a basically similar pattern, but the connections are more widespread. In all three primates, connections are not restricted to cortex representing the line of decussation of the retina, and even striate cortex has connections displaced from the border. These connections extend up to 2 mm into area 17 in owl monkeys, and they are most extensive in galagos, where they form foci that are coextensive with regions of high cytochrome oxidase activity. Connections are concentrated in the caudal half of area 18, but protrusions of connections cross of the width of the field. The middle temporal visual area (MT) has unevenly distributed connections throughout, with some increase in density along the border. The dorsomedial visual area (DM) of owl monkeys has connections restricted to the rostral border, and a similar region of sparse connections identifies the probable location of DM in marmosets and galagos. Caudal parts of the dorsolateral visual area (DL) of owl monkeys have dense interhemispheric connections. Other visual areas are characterized by unevenly distributed clumps of connections, suggesting that functions are not uniformly distributed, and that semiregular processing modules exist. The results indicate that most extrastriate visual neurons are subject to interhemispheric influences and support the conclusion that callosal connections are functionally heterogeneous.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk