Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Physiol. 1978 Mar;276:481-500.

The sacral parasympathetic reflex pathway regulating colonic motility and defaecation in the cat.

Abstract

1. The sacral parasympathetic outflow to the large intestine of the cat was studied by monitoring simultaneously intestinal motility and the efferent firing in postganglionic fibres on the serosal surface of the mid-distal colon. 2. Increases in efferent firing were noted during the occurrence of spontaneous propulsive activity (tonic pressure waves) or segmental contractions (slow rhythmic pressure waves). The neural discharge was not altered by transection of the lumbar sympathetic innervation to the colon but was blocked by interruption of the sacral parasympathetic outflow. 3. Electrical stimulation of pelvic nerve afferents arising in the colon or distension of the colon or rectum evoked reflex increases in efferent firing and sustained propulsive contractions that were associated with defaecation. Both responses were abolished by transection of the pelvic nerves or sacral dorsal roots. 4. Electrical stimulation of colonic afferent fibres also evoked synchronous reflex discharges in colonic efferents at latencies ranging from 180 to 300 msec. The discharges were enhanced during propulsive contractions, abolished by transection of the pelvic nerves but not altered by transection of the lumbar sympathetic nerves. 5. Sacral reflexes were present in cats with intact spinal cord and in chronic spinal animals (transection at T10-T12). The reflexes recovered within minutes to several hours after acute transection of the spinal cord. 6. Electrophysiological measurements indicated that the sacral reflexes to the large intestine were mediated by non-myelinated afferent and preganglionic efferent fibres. The central delay for the reflex was estimated to be 45-60 msec. 7. It is concluded that the sacral parasympathetic reflexes to the large intestine are mediated via a spinal pathway and have an essential role in the initiation of propulsive activity during defaecation.

PMID:
650474
[PubMed - indexed for MEDLINE]
PMCID:
PMC1282439
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk