Send to:

Choose Destination
See comment in PubMed Commons below
Biophys J. 1984 Oct;46(4):479-86.

Resolution of mixtures of fluorophores using variable-frequency phase and modulation data.


We measured fluorescence phase shift and modulation data for one-, two- and, three-component mixtures of fluorophores at modulation frequencies ranging from 1 to 140 MHz. These data were analyzed using the least-squares procedure described in the preceding paper (Lakowicz, J. R., G. Laczko, M. Cherek, E. Gratton, and M. Limkeman, 1984, Biophys. J., 46:463-477). Using data obtained at a single emission bandpass, the lifetimes and preexponential factors of two-component mixtures could be easily resolved if the lifetimes differed by a factor of 2. With currently available instrumental stability, three-component mixtures could be resolved when the overall range of decay times was 10-fold, (e.g., 1.3, 4.4, and 12 ns). Measurement of phase and modulation data at several emission wavelengths, where the ratio of the preexponential factors varied, enhanced our ability to resolve closely spaced two and three-component decays. Two-component mixtures could then be resolved if the lifetimes differed by 30% (4.4 and 6.2 ns). Also, the multiple-wavelength data allowed the lifetimes and emission spectra of the three-components of a mixture to be resolved. These results demonstrated that resolution of multiexponential decay laws was possible using frequency-domain phase-modulation fluorometry.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk