Send to

Choose Destination
See comment in PubMed Commons below
Nature. 1984 Aug 2-8;310(5976):430-2.

Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 degrees C.


The upper temperature at which a living system can exist is limited by the hydrolytic breakdown rate of its chemical constituents. The peptide bonds of proteins, the phosphodiester and N-glycosyl bonds in RNA and DNA, and the pyrophosphate and N-glycosyl bonds in nucleotides such as ATP and NAD are among the more important bonds that will undergo hydrolysis. The decomposition of biomolecules via non-hydrolytic pathways such as decarboxylations and dehydrations may also be critical factors in determining this upper temperature limit. Baross and Deming recently reported 'black smoker' bacteria, which they isolated from deep-sea hydrothermal vents, growing at 250 degrees C. Here I have attempted to establish the rates for the hydrolysis and/or decomposition of critical biomolecules to determine their ability to exist at this temperature. My results clearly indicate that if these organisms exist, and if their metabolic reactions occur in an aqueous environment, they could not survive at this temperature if they were composed of biomolecules such as proteins and nucleic acids, due to the very rapid rate of decomposition of such molecules.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk