Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell. 1983 May;33(1):25-35.

The double-strand-break repair model for recombination.

Abstract

Gene conversion is the nonreciprocal transfer of information from one DNA duplex to another; in meiosis, it is frequently associated with crossing-over. We review the genetic properties of meiotic recombination and previous models of conversion and crossing-over. In these models, recombination is initiated by single-strand nicks, and heteroduplex DNA is generated. Gene conversion is explained by the repair of mismatches present in heteroduplex DNA. We propose a new mechanism for meiotic recombination, in which events are initiated by double-strand breaks that are enlarged to double-strand gaps. Gene conversion can then occur by the repair of a double-strand gap, and postmeiotic segregation can result from heteroduplex DNA formed at the boundaries of the gap-repair region. The repair of double-strand gaps is an efficient process in yeast, and is known to be associated with crossing-over. The genetic implications of the double-strand-break repair model are explored.

PMID:
6380756
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk