Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Cell. 1983 May;33(1):25-35.

The double-strand-break repair model for recombination.


Gene conversion is the nonreciprocal transfer of information from one DNA duplex to another; in meiosis, it is frequently associated with crossing-over. We review the genetic properties of meiotic recombination and previous models of conversion and crossing-over. In these models, recombination is initiated by single-strand nicks, and heteroduplex DNA is generated. Gene conversion is explained by the repair of mismatches present in heteroduplex DNA. We propose a new mechanism for meiotic recombination, in which events are initiated by double-strand breaks that are enlarged to double-strand gaps. Gene conversion can then occur by the repair of a double-strand gap, and postmeiotic segregation can result from heteroduplex DNA formed at the boundaries of the gap-repair region. The repair of double-strand gaps is an efficient process in yeast, and is known to be associated with crossing-over. The genetic implications of the double-strand-break repair model are explored.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk