Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1978 Mar;35(3):567-75.

Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves.


Biological dinitrogen fixation in mangrove communities of the Tampa Bay region of South Florida was investigated using the acetylene reduction technique. Low rates of acetylene reduction (0.01 to 1.84 nmol of C(2)H(4)/g [wet weight] per h) were associated with plant-free sediments, while plant-associated sediments gave rise to slightly higher rates. Activity in sediments increased greatly upon the addition of various carbon sources, indicating an energy limitation for nitrogenase (C(2)H(2)) activity. In situ determinations of dinitrogen fixation in sediments also indicated low rates and exhibited a similar response to glucose amendment. Litter from the green macroalga, Ulva spp., mangrove leaves, and sea grass also gave rise to significant rates of acetylene reduction. Higher rates of nitrogenase activity (15 to 53 nmol of C(2)H(4)/g [wet weight] per h were associated with washed excised roots of three Florida mangrove species [Rhizophora mangle L., Avicennia germinans (L) Stern, and Laguncularia racemosa Gaertn.] as well as with isolated root systems of intact plants (11 to 58 mug of N/g [dry weight] per h). Following a short lag period, root-associated activity was linear and did not exhibit a marked response to glucose amendment. It appears that dinitrogen-fixing bacteria in the mangrove rhizoplane are able to use root exudates and/or sloughed cell debris as energy sources for dinitrogen fixation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk