Send to:

Choose Destination
See comment in PubMed Commons below
Exp Hematol. 1984 Oct;12(9):720-7.

Production of colony-stimulating factor(s) for granulocyte-macrophage and multipotential (granulocyte/erythroid/megakaryocyte/macrophage) hematopoietic progenitor cells (CFU-GEMM) by clonal lines of human IL-2-dependent T-lymphocytes.


Human T-lymphocyte lines that were selected for recognition of HLA-DR6 antigen and were dependent for growth in vitro on an added source of interleukin-2 (IL-2) were derived from the peripheral blood of normal individuals. Each was tested for production of a lymphokine(s) with properties of granulocyte-macrophage colony-stimulating factor (GM-CSF) using as target cells nonadherent cells from human long-term bone marrow cultures (LTBMC) or fresh marrow. Each of eight T-lymphocyte lines that were OKT3, OKT4, and HLA-DR positive produced GM-CSF that stimulated colony formation by both LTBMC cells and fresh marrow. Individually examined single-cell-derived bone marrow colonies growing in T-cell GM-CSF contained peroxidase-positive neutrophils, and macrophage-monocytes (GM-CFUc). Supernatant from a single-cell-derived T-cell clonal line designated F1 stimulated formation of granulocyte-macrophage colonies, megakaryocyte colonies, macroscopic erythroid bursts, and multipotential colonies containing erythroid cells, megakaryocytes, neutrophilic and eosinophilic granulocytes, and monocyte-macrophages (CFU-GEMM) in the presence of added erythropoietin. These data indicate that human IL-2-responsive T-lymphocytes produce lymphokine(s) that stimulate proliferation of primitive as well as committed hematopoietic stem cells, and implicate human T-lymphocytes in regulation of human multipotential hematopoietic stem cells in vivo.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk