Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1982 May 11;21(10):2513-8.

DNA polymerase delta: one polypeptide, two activities.


DNA polymerase delta from rabbit bone marrow has an associated 3'-5'-exonuclease. Previous studies demonstrated a Stokes radius of 45.5 A by gel filtration and a sedimentation coefficient of 6.5 S by zone sedimentation. Thus, a molecular weight of 122000 and a frictional coefficient of 1.39 were calculated [Byrnes, J. J., & Black, V. L. (1978) Biochemistry 17, 4226-4231]. Several problems obstructed further purification and definition of DNA polymerase delta. The small amount of protein obtained limited further purification as the nonspecific loss of enzyme in subsequent procedures was excessive. Furthermore, the amount of protein recovered was insufficient for conventional analysis. These difficulties have been overcome, and DNA polymerase delta has been purified to apparent homogeneity. Under conditions of nondenaturing microgel electrophoresis, DNA polymerase b aggregates to molecular weight species of 300000 and higher. In situ assays for DNA polymerase and exonuclease in these gels generate concordant activity profiles. Upon sodium dodecyl sulfate gel electrophoresis, delta is a single polypeptide of 122000 apparent molecular weight. The DNA polymerase incorporates between 250000 and 300000 nmol of thymidine deoxyribonucleoside monophosphate (dTMP) into poly(dA)/oligo(dT) (mg of protein)-1 h-2 at 37 degrees C; the exonuclease simultaneously hydrolyzes 13% of the newly synthesized DNA. Aphidicolin, considered to be a specific inhibitor of DNA polymerase alpha, inhibits both the DNA polymerase and 3'-5'-exonuclease activities of delta. DNA polymerase alpha from rabbit bone marrow does not share a common subunit with delta. Therefore, aphidicolin binding is not specific for alpha, and conclusions based upon the supposition that it is must be reconsidered.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk