Display Settings:


Send to:

Choose Destination
J Biol Chem. 1984 Mar 25;259(6):3977-84.

Biosynthesis of salivary proteins in the parotid gland of the subhuman primate, Macaca fascicularis. Cell-free translation of the mRNA for a proline-rich glycoprotein and partial amino acid sequence and processing of its signal peptide.


The major anionic proline-rich proteins in the parotid and submandibular secretions of subhuman primates and man perform the important biological function of inhibiting crystal growth of calcium phosphate salts from saliva, which is supersaturated with calcium phosphate salts, thereby preventing excess deposition of hydroxylapatite on tooth surfaces. The present work was initiated as a first step towards investigating proline-rich protein biosynthesis in parotid glands using the subhuman primate, Macaca fascicularis, as a model system. RNA was isolated from macaque parotid glands and separated into poly(A)-enriched and poly(A)-deficient fractions by chromatography on oligo(dT)-cellulose. The mRNAs in both fractions promoted incorporation of radiolabeled amino acids into polypeptides in an mRNA-dependent reticulocyte lysate translation system. Five major proline-rich polypeptides were detected and one of these was shown to be the in vitro precursor of the major anionic macaque proline-rich protein (MPRP), which is the structural and functional counterpart of the major anionic proline-rich proteins in the parotid and submandibular secretions of man (Oppenheim, F.G., Offner, G.D., and Troxler, R.F. (1982) J. Biol. Chem. 257, 9271-9282). Radiosequencing of the material in anti-MPRP immune precipitates showed that the in vitro precursor of MPRP contained an 18-residue signal peptide. The in vitro precursor of MPRP was processed in dog pancreas vesicles to a form with a lower apparent Mr and with an NH2-terminal amino acid sequence identical to that of native MPRP. The phenylthiohydantoin derivatives of Ala and Ile were detected at residue 9 and those of Val and Met were detected at residue 16 of the signal peptide. This indicated that the in vitro precursor of MPRP, which migrated electrophoretically as a single band in anti-MPRP immune precipitates, contained two different in vitro polypeptides derived from two different mRNAs. These results are discussed in the context of the genetic polymorphism among the major anionic proline-rich proteins in the parotid and submandibular secretions of man.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk