Display Settings:

Format

Send to:

Choose Destination
Exp Cell Res. 1983 Jun;146(1):163-75.

The morphologic pathway of binding and internalization of epidermal growth factor in cultured cells. Studies on A431, KB, and 3T3 cells, using multiple methods of labelling.

Abstract

We have prepared several electron and light microscopic labels of epidermal growth factor (EGF) to analyse the morphologic features of its binding and internalization by cultured cells. These include a ferritin conjugate of EGF, a covalent conjugate of EGF and horseradish peroxidase (EGF-HRP), a colloidal gold marker system using EGF-HRP as a primary antigen, and a covalent complex of EGF with rhodamine-labelled lactalbumin. All of the light and electron microscopic labels showed similar patterns of binding. EGF initially bound to diffusely distributed cell surface receptors at 4 degrees C. The EGF-receptor complexes clustered into clathrin-coated pits on the cell surface only when the temperature was raised to 37 degrees C. In KB and Swiss 3T3 cells, this was followed by rapid internationalization into receptosomes, compartmentalization into the Golgi system, clustering in the clathrin-coated regions of the Golgi, and finally delivery into lysosomes from the Golgi. This general pathway was seen in Swiss 3T3 cells which have a low number of EGF receptors, KB cells which have a moderate number of receptors and A431 cells that have a high number of receptors. However, the ruffling activity induced in A431 cells by EGF produced some internalization through macropinosomes, making the pathway of entry more difficult to evaluate. Double label experiments showed that EGF is internalized together with alpha 2-macroglobulin and adenovirus particles. These data clarify the route of entry of EGF in different cell types using multiple labels, and shows that it enters cells through the same coated pit entry pathway as most other ligands previously examined.

PMID:
6190668
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk