Conformation of the antifreeze glycoprotein of polar fish

Arch Biochem Biophys. 1984 Aug 1;232(2):624-31. doi: 10.1016/0003-9861(84)90582-4.

Abstract

High-field proton and 13C NMR spectroscopy has been used to test and refine the recent proposal, based on vacuum uv circular dichroism results, of a threefold left-handed helical conformation for antifreeze glycoprotein (AFGP). Partial assignment of the protons of the glycotripeptide repeating unit has been made by comparison with spectra of model compounds, by selective decoupling, and by measurements of nuclear Overhauser effect (nOe). At 40 degrees C, AFGP fraction 8 (Mr 2600) shows 2-Hz linewidths which broaden at lower temperature. Neither 1H nor 13C chemical shifts depend strongly on temperature, suggesting no abrupt conformational transition. The nOe between alanine alpha and beta protons vary with temperature and with field strength, from small positive enhancements at 50 degrees C and 80 MHz to large negative effects at 3 degrees C and 300 MHz, indicating a substantial change of rotational correlation time with temperature. The higher-molecular-weight fraction 1-4 shows negative nOe at all temperatures. The CD spectra of fraction 1-4 show bands characteristic of the polyproline II structure at both 3 and 50 degrees C, while those bands in fraction 8 are weaker at 50 than 3 degrees C. The 1H nOe, the 13C T1, and CD data are interpreted as indicating that AFGP fraction 8 is an extended "rod-like" conformation at low temperature which becomes a flexible coil at high temperature, while fraction 1-4 is a flexible rod with sufficient segmental mobility to eliminate any long-range order.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antifreeze Proteins
  • Circular Dichroism
  • Fishes
  • Glycoproteins*
  • Magnetic Resonance Spectroscopy
  • Protein Conformation
  • Protons
  • Thermodynamics

Substances

  • Antifreeze Proteins
  • Glycoproteins
  • Protons