Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1984 Jul;52(1):126-42.

Excitation of hippocampal pyramidal cells by an electrical field effect.

Abstract

The effects of electrical fields from antidromic stimulation of CA1 pyramidal cells were studied in slices of rat hippocampus in which chemical synaptic transmission had been blocked by superfusion with physiological solution containing Mn2+ and lowered concentration of Ca2+. Differential voltage recordings were made between two microelectrode positions, on intracellular to a pyramidal cell and the other in the adjacent extracellular space. This technique revealed brief transmembrane depolarizations that occurred synchronously with negative-going extracellular population spikes in the adjacent cell body layer. Glial cells in this region did not exhibit these depolarizations. In some pyramidal cells, alvear stimulation that was too weak to excite the axon of the impaled cell elicited action potentials, which appeared to arise from transmembrane depolarizations at the soma. When subthreshold transmembrane depolarizations were superimposed on subthreshold depolarizing current pulses, somatic action potentials were generated synchronously with the antidromic population spikes. The depolarizations of pyramidal somata were finely graded with stimulus intensity, were unaffected by polarization of the membrane, and were not occluded by preceding action potentials. The laminar profile of extracellular field potentials perpendicular to the cell body layer was obtained with an array of extracellular recording locations. Numerical techniques of current source-density analysis indicated that at the peak of the somatic population spike, there was an extracellular current sink near pyramidal somata and sources in distal dendritic regions. It is concluded that during population spikes an extracellular electrical field causes currents to flow passively across inactive pyramidal cell membranes, thus depolarizing their somata. The transmembrane depolarizations associated with population spikes would tend to excite and synchronize the population of pyramidal cells.

PMID:
6086853
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk