Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1976 May 4;15(9):1975-87.

Glucose-6-phosphate dehydrogenase from brewers' yeast. The effects of pH and temperature on the steady-state kinetic parameters of the two-chain protein species.


A systematic study has been made of the pH- and temperature-dependency of the steady-state kinetic parameters of the stabilized two-subunit enzyme species of glucose-6-phosphate dehydrogenase, in the absence of superimposed association-dissociation reactions. The Vmax(app) data obtained in several buffers between pH 5 and 10 and at 18-32 degrees C lead to the postulate that at least two sets of protonic equilibria may govern the catalysis (one near pH 5.7 AT 25 DEGREES C and another near pH 9.2); furthermore, two pathways for product formation (i.e., two Vmax's) appear to be required to explain the biphasic nature of the log Vmax(app) vs. pH curves, with Vmax(basic) greater than Vmax(acidic + neutral). Of the several buffers explored, either a uniform degree of interaction or a minimal degree of buffer species interaction could be assessed from the enthalpy changes associated with the derived values for ionization constants attributed to the protonic equilibria in the enzyme-substrates ternary complexes for the case of Tris-acetate-EDTA buffers, at constant ionic strength. With the selection of this buffer at 0.1 (T/2) and at 25 and 32 degrees C, a self-consistent kinetic mechanism has emerged which allows for the random binding of the two fully ionized substrates to the enzyme via two major pathways, and product formation by both E-A--B- and HE-A--B-. As before (Kuby et al. Arch. Biochem, Biophys. 165, 153-178, 1974), a quasi-equilibrium is presumed, with rate-limiting steps (k + 5 and k + 5') at the interconversion of the ternary complexes. Values for the two sets of protonic equilibria defined by this mechanism (viz., pKk, pKH2 for the first ionizations, and pKk', pKH' for the second) could then be estimated. From their numerical values (e.g., at 25 degrees C: pKK = 5.7 PKH2 = 5.2; and pKK' = 9.1, PKH' = 8.2) and from the values for delta H degrees ioniz (e.g., delta H degrees pKK APPROXIMATELY 5.1 KCAL/MOL; DELTA H degrees pKK' APPROXIMATELY 11 KCAL/MOL), A POSTULATE IS PRESENTED WHICH ATTRIBUTES THESE Acid dissociation constants to an imidazole and epsilon-amino group, respectively.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk