Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 1973 May;134(1):225-38.

The regulation of poly-beta-hydroxybutyrate metabolism in Azotobacter beijerinckii.


1. The enzymes beta-ketothiolase, acetoacetyl-CoA reductase, acetoacetate-succinate CoA-transferase (;thiophorase') and d(-)-3-hydroxybutyrate dehydrogenase have been partially purified from crude extracts of glucose-grown nitrogen-fixing batch cultures of Azotobacter beijerinckii. The condensation of acetyl-CoA to acetoacetyl-CoA catalysed by beta-ketothiolase is inhibited by CoASH, and the reverse reaction is inhibited by acetoacetyl-CoA. Acetoacetyl-CoA reductase has K(m) for acetoacetyl-CoA of 1.8mum and is inhibited by acetoacetyl-CoA above 10mum. The enzyme utilizes either NADH or NADPH as electron donor. The second enzyme of poly-beta-hydroxybutyrate degradation, d(-)-3-hydroxybutyrate dehydrogenase, is NAD(+)-specific and is inhibited by NADH, pyruvate and alpha-oxoglutarate. CoA transferase is inhibited by acetoacetate, the product of hydroxybutyrate oxidation. In continuous cultures poly-beta-hydroxybutyrate biosynthesis ceased on relaxation of oxygen-limitation and the rates in situ of oxygen consumption and carbon dioxide evolution of such cultures increased without a concomitant increase in glucose uptake. 2. On the basis of these and other findings a cyclic mechanism for the biosynthesis and degradation of poly-beta-hydroxybutyrate is proposed, together with a regulatory scheme suggesting that poly-beta-hydroxybutyrate metabolism is controlled by the redox state of the cell and the availability of CoASH, pyruvate and alpha-oxoglutarate. beta-Ketothiolase plays a key role in the regulatory process. Similarities to the pathways of poly-beta-hydroxybutyrate biosynthesis and degradation in Hydrogenomonas are discussed.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk