Display Settings:

Format

Send to:

Choose Destination
J Bacteriol. 1966 Feb;91(2):634-41.

Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus.

Abstract

Downey, R. J. (University of Notre Dame, Notre Dame, Ind.). Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus. J. Bacteriol. 91:634-641. 1966.-Bacillus stearothermophilus 2184 required nitrate to grow in the absence of oxygen. Like many facultative microorganisms, the growth obtained anaerobically was considerably less than that obtained aerobically, even though the dissimilatory reduction of nitrate is, in effect, anaerobic respiration. The ability to reduce nitrate depended on the induction of nitrate reductase. Although oxygen at low levels did not retard induction of the enzyme, enzyme synthesis was considerably lessened by aeration. A semisynthetic medium containing nitrate supported aerobic growth of the thermophile but did not support anaerobic growth. The adaptation to nitrate resulted in a decrease in the level of cytochrome oxidase normally present in aerobically grown cells. Although the aerobic oxidation of succinate by the respiratory enzymes from aerobically grown cells was inhibited by 2-N-heptyl-4-hydroxyquinoline-N-oxide, the anaerobic oxidation of succinate by nitrate in a similar preparation from nitrate-adapted cells was not. The nitrate reductase in the bacillus was strongly inhibited by cyanide and azide but not by carbon monoxide. The nitrate reductase catalyzed the anaerobic oxidation of reduced nicotinamide adenine dinucleotide, and appeared to transfer electrons from cytochrome b(1) to nitrate. Cytochrome c(1) did not appear to be involved in the transfer.

PMID:
4286885
[PubMed - indexed for MEDLINE]
PMCID:
PMC314907
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk