Numerical simulation of steady turbulent flow through trileaflet aortic heart valves--II. Results on five models

J Biomech. 1985;18(12):909-26. doi: 10.1016/0021-9290(85)90035-1.

Abstract

Turbulent flow simulations are run for five aortic trileaflet valve geometries, ranging from a valve leaflet orifice area of 1.1 cm2 (Model A1--very stenotic) to 5.0 cm2 (Model A5--natural valve). The simulated data compares well with experimental measurements made downstream of various aortic trileaflet valves by Woo (PhD Thesis, 1984). The location and approximate width and length of recirculation regions are correctly predicted. The less stenotic valve models reattach at the end of the aortic sinus region, 1.1 diameters downstream of the valve. The central jet exiting the less stenotic valve models is not significantly different from fully developed flow, and therefore recovers very quickly downstream of the reattachment point. The more stenotic valves disturb the flow to a greater degree, generating recirculation regions large enough to escape the sinuses and reattach further downstream. Peak turbulent shear stress values downstream of the aortic valve models which approximated prosthetic valves are 125 and 300 Nm-2, very near experimental observations of 150 to 350 Nm-2. The predicted Reynolds stress profiles also present the correct shape, a double peak profile, with the location of the peak occurring at the location of maximum velocity gradient, which occurs near the recirculation region. The pressure drop across model A2 (leaflet orifice area 1.6 cm2) is 20 mmHg at 1.6 diameters downstream. This compares well with values ranging from 19.5 to 26.2 mmHg for valves of similar orifice areas. The pressure drop decreases with decreasing valve stenosis, to a negligible value across the least stenotic valve model. Based on the good agreement between experimental measurements of velocity, shear stress and pressure drop, compared to the simulated data, the model has the potential to be a valuable tool in the analysis of heart valve designs.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aortic Valve Stenosis / physiopathology*
  • Blood Flow Velocity
  • Blood Pressure
  • Coronary Circulation*
  • Heart Valve Prosthesis*
  • Humans
  • Mathematics
  • Models, Theoretical*
  • Prosthesis Design