Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1985 Jan 1;24(1):1-8.

pH-dependent fusion of liposomes using titratable polycations.

Abstract

Polylysine promoted extensive membrane mixing of liposomes only if the buffer pH was below the pKa of the lysyl residues. This observation suggested that fusion could be regulated in a physiological pH range if the homopolymer of L-histidine was substituted as fusogen. Microgram quantities of polyhistidine were added to liposomes composed of soybean phospholipids, or to defined phospholipid-cholesterol mixtures which simulate the lipid composition of plasma membranes. A quantitative resonance energy transfer assay determined the extent of lipid phase mixing related to fusion. No fusion was detected at pH 7.4, but when the pH was lowered to 6.5 or below, fusion was rapid and substantial. The extent of membrane mixing increased with progressive acidification of the vesicle-fusogen suspension. The charge density of each polyhistidine molecule, not the total cationic charge per vesicle, influenced the extent of fusion. The kinetics of the fusion reaction were rapid, as membrane mixing was completed within 1 min. If the vesicle suspension was acidified before fusogen addition, the rate of membrane mixing slowed 4-fold. This, as well as a slight increase in light scattering noted whenever polyhistidine was added at pH 7.4, suggests an enhancement of fusion kinetics by preaggregation of vesicles at neutral pH. The lipid composition, regulation of membrane mixing by pH in a physiological range, and rapid kinetics suggest that this model of liposome fusion may be pertinent to understanding some biological fusion events.

PMID:
3994960
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk