Send to:

Choose Destination
See comment in PubMed Commons below
Radiat Res. 1985 Apr;102(1):86-98.

Role of membrane lipids and membrane fluidity in thermosensitivity and thermotolerance of mammalian cells.


The role of membrane lipids and membrane fluidity in thermosensitivity of mammalian cells is not well understood. The limited experimental data in the literature have led to conflicting results. A detailed investigation of lipid composition and membrane fluidity of cellular membranes was undertaken to determine their relationship to cell survival after hyperthermia. Ehrlich ascites (EA) cells, mouse fibroblast LM cells, and HeLa S3 cells differed in thermosensitivity as expressed by a D0 of 3.1, 5.2, and 9.7 min, respectively, at 44 degrees C. No correlation with cellular thermosensitivity could be found with respect to the amount of cholesterol and to the cholesterol to phospholipid ratio in the particulate fraction of the cells. By growing the cells for some generations in different media, cholesterol and phospholipid content could be changed in the particulate fraction, but no difference in cell survival was observed. When mouse fibroblasts were grown for 24 hr in a serum-free medium supplemented with arachidonic acid (20:4), all subcellular membranes were about eight times richer in phospholipids containing polyunsaturated acyl (PUFA) chains and membrane fluidity was increased as measured by fluorescence polarization of diphenylhexatriene (DPH). The alterations resulted in a higher thermosensitivity. When mouse fibroblasts were made thermotolerant no change in cholesterol and phospholipid content could be found in the particulate fraction of the cells. The relative weights and the quality of the phospholipids as well as the fatty acid composition of the phospholipids appeared to be the same for normal and thermotolerant cells. Fluidity measurements in whole cells, isolated plasma membranes, and liposomes prepared from phospholipids extracted from the cells revealed no significant differences between normal and thermotolerant fibroblasts when assayed by fluorescence polarization (DPH) and electron spin resonance (5-nitroxystearate). It is concluded that the mechanism of thermal adaptation resulting in differences in lipid composition as reported in the literature differs from the mechanism of the acquisition of thermal tolerance. The lower heat sensitivity of thermotolerant cells, as initiated by a nonlethal triggering heat dose followed by an induction period at 37 degrees C, does not involve changes in lipid composition and membrane fluidity. However, a prompt and clear (also nonlethal) change in membrane fluidity by an increase in PUFA does result in an increased thermosensitivity, probably because of an indirect effect via the lipids in causing disfunctioning of proteins in the membrane and/or the cytoskeleton.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk